From: Jan Kara jack@suse.cz
stable inclusion from stable-v4.19.320 commit 2b2d2b8766db028bd827af34075f221ae9e9efff category: bugfix bugzilla: https://gitee.com/src-openeuler/kernel/issues/IAGRLH CVE: CVE-2024-42131
Reference: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=...
--------------------------------
[ Upstream commit 385d838df280eba6c8680f9777bfa0d0bfe7e8b2 ]
The dirty throttling logic is interspersed with assumptions that dirty limits in PAGE_SIZE units fit into 32-bit (so that various multiplications fit into 64-bits). If limits end up being larger, we will hit overflows, possible divisions by 0 etc. Fix these problems by never allowing so large dirty limits as they have dubious practical value anyway. For dirty_bytes / dirty_background_bytes interfaces we can just refuse to set so large limits. For dirty_ratio / dirty_background_ratio it isn't so simple as the dirty limit is computed from the amount of available memory which can change due to memory hotplug etc. So when converting dirty limits from ratios to numbers of pages, we just don't allow the result to exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator sets dirty limits to >16 TB.
Link: https://lkml.kernel.org/r/20240621144246.11148-2-jack@suse.cz Signed-off-by: Jan Kara jack@suse.cz Reported-by: Zach O'Keefe zokeefe@google.com Reviewed-By: Zach O'Keefe zokeefe@google.com Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton akpm@linux-foundation.org Signed-off-by: Sasha Levin sashal@kernel.org Signed-off-by: Ma Wupeng mawupeng1@huawei.com --- mm/page-writeback.c | 30 ++++++++++++++++++++++++++---- 1 file changed, 26 insertions(+), 4 deletions(-)
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 43e83930ce44..06d8242a926e 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -432,13 +432,20 @@ static void domain_dirty_limits(struct dirty_throttle_control *dtc) else bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
- if (bg_thresh >= thresh) - bg_thresh = thresh / 2; tsk = current; if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; } + /* + * Dirty throttling logic assumes the limits in page units fit into + * 32-bits. This gives 16TB dirty limits max which is hopefully enough. + */ + if (thresh > UINT_MAX) + thresh = UINT_MAX; + /* This makes sure bg_thresh is within 32-bits as well */ + if (bg_thresh >= thresh) + bg_thresh = thresh / 2; dtc->thresh = thresh; dtc->bg_thresh = bg_thresh;
@@ -488,7 +495,11 @@ static unsigned long node_dirty_limit(struct pglist_data *pgdat) if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) dirty += dirty / 4;
- return dirty; + /* + * Dirty throttling logic assumes the limits in page units fit into + * 32-bits. This gives 16TB dirty limits max which is hopefully enough. + */ + return min_t(unsigned long, dirty, UINT_MAX); }
/** @@ -527,10 +538,17 @@ int dirty_background_bytes_handler(struct ctl_table *table, int write, loff_t *ppos) { int ret; + unsigned long old_bytes = dirty_background_bytes;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); - if (ret == 0 && write) + if (ret == 0 && write) { + if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > + UINT_MAX) { + dirty_background_bytes = old_bytes; + return -ERANGE; + } dirty_background_ratio = 0; + } return ret; }
@@ -558,6 +576,10 @@ int dirty_bytes_handler(struct ctl_table *table, int write,
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write && vm_dirty_bytes != old_bytes) { + if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { + vm_dirty_bytes = old_bytes; + return -ERANGE; + } writeback_set_ratelimit(); vm_dirty_ratio = 0; }