From: Huang Ying ying.huang@intel.com
mainline inclusion from mainline-v6.7-rc1 commit ca71fe1ad9221a89c6a25f49159c600d9e598ae1 category: feature bugzilla: https://gitee.com/openeuler/kernel/issues/I8JXIR
Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?i...
--------------------------------
Patch series "mm: PCP high auto-tuning", v3.
The page allocation performance requirements of different workloads are often different. So, we need to tune the PCP (Per-CPU Pageset) high on each CPU automatically to optimize the page allocation performance.
The list of patches in series is as follows,
[1/9] mm, pcp: avoid to drain PCP when process exit [2/9] cacheinfo: calculate per-CPU data cache size [3/9] mm, pcp: reduce lock contention for draining high-order pages [4/9] mm: restrict the pcp batch scale factor to avoid too long latency [5/9] mm, page_alloc: scale the number of pages that are batch allocated [6/9] mm: add framework for PCP high auto-tuning [7/9] mm: tune PCP high automatically [8/9] mm, pcp: decrease PCP high if free pages < high watermark [9/9] mm, pcp: reduce detecting time of consecutive high order page freeing
Patch [1/9], [2/9], [3/9] optimize the PCP draining for consecutive high-order pages freeing.
Patch [4/9], [5/9] optimize batch freeing and allocating.
Patch [6/9], [7/9], [8/9] implement and optimize a PCP high auto-tuning method.
Patch [9/9] optimize the PCP draining for consecutive high order page freeing based on PCP high auto-tuning.
The test results for patches with performance impact are as follows,
kbuild ======
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances in parallel (each with `make -j 28`) in 8 cgroup. This simulates the kbuild server that is used by 0-Day kbuild service.
build time lock contend% free_high alloc_zone ---------- ---------- --------- ---------- base 100.0 14.0 100.0 100.0 patch1 99.5 12.8 19.5 95.6 patch3 99.4 12.6 7.1 95.6 patch5 98.6 11.0 8.1 97.1 patch7 95.1 0.5 2.8 15.6 patch9 95.0 1.0 8.8 20.0
The PCP draining optimization (patch [1/9], [3/9]) and PCP batch allocation optimization (patch [5/9]) reduces zone lock contention a little. The PCP high auto-tuning (patch [7/9], [9/9]) reduces build time visibly. Where the tuning target: the number of pages allocated from zone reduces greatly. So, the zone contention cycles% reduces greatly.
With PCP tuning patches (patch [7/9], [9/9]), the average used memory during test increases up to 18.4% because more pages are cached in PCP. But at the end of the test, the number of the used memory decreases to the same level as that of the base patch. That is, the pages cached in PCP will be released to zone after not being used actively.
netperf SCTP_STREAM_MANY ========================
On a 2-socket Intel server with 128 logical CPU, we tested SCTP_STREAM_MANY test case of netperf test suite with 64-pair processes.
score lock contend% free_high alloc_zone cache miss rate% ----- ---------- --------- ---------- ---------------- base 100.0 2.1 100.0 100.0 1.3 patch1 99.4 2.1 99.4 99.4 1.3 patch3 106.4 1.3 13.3 106.3 1.3 patch5 106.0 1.2 13.2 105.9 1.3 patch7 103.4 1.9 6.7 90.3 7.6 patch9 108.6 1.3 13.7 108.6 1.3
The PCP draining optimization (patch [1/9]+[3/9]) improves performance. The PCP high auto-tuning (patch [7/9]) reduces performance a little because PCP draining cannot be triggered in time sometimes. So, the cache miss rate% increases. The further PCP draining optimization (patch [9/9]) based on PCP tuning restore the performance.
lmbench3 UNIX (AF_UNIX) =======================
On a 2-socket Intel server with 128 logical CPU, we tested UNIX (AF_UNIX socket) test case of lmbench3 test suite with 16-pair processes.
score lock contend% free_high alloc_zone cache miss rate% ----- ---------- --------- ---------- ---------------- base 100.0 51.4 100.0 100.0 0.2 patch1 116.8 46.1 69.5 104.3 0.2 patch3 199.1 21.3 7.0 104.9 0.2 patch5 200.0 20.8 7.1 106.9 0.3 patch7 191.6 19.9 6.8 103.8 2.8 patch9 193.4 21.7 7.0 104.7 2.1
The PCP draining optimization (patch [1/9], [3/9]) improves performance much. The PCP tuning (patch [7/9]) reduces performance a little because PCP draining cannot be triggered in time sometimes. The further PCP draining optimization (patch [9/9]) based on PCP tuning restores the performance partly.
The patchset adds several fields in struct per_cpu_pages. The struct layout before/after the patchset is as follows,
base ====
struct per_cpu_pages { spinlock_t lock; /* 0 4 */ int count; /* 4 4 */ int high; /* 8 4 */ int batch; /* 12 4 */ short int free_factor; /* 16 2 */ short int expire; /* 18 2 */
/* XXX 4 bytes hole, try to pack */
struct list_head lists[13]; /* 24 208 */
/* size: 256, cachelines: 4, members: 7 */ /* sum members: 228, holes: 1, sum holes: 4 */ /* padding: 24 */ } __attribute__((__aligned__(64)));
patched =======
struct per_cpu_pages { spinlock_t lock; /* 0 4 */ int count; /* 4 4 */ int high; /* 8 4 */ int high_min; /* 12 4 */ int high_max; /* 16 4 */ int batch; /* 20 4 */ u8 flags; /* 24 1 */ u8 alloc_factor; /* 25 1 */ u8 expire; /* 26 1 */
/* XXX 1 byte hole, try to pack */
short int free_count; /* 28 2 */
/* XXX 2 bytes hole, try to pack */
struct list_head lists[13]; /* 32 208 */
/* size: 256, cachelines: 4, members: 11 */ /* sum members: 237, holes: 2, sum holes: 3 */ /* padding: 16 */ } __attribute__((__aligned__(64)));
The size of the struct doesn't changed with the patchset.
This patch (of 9):
In commit f26b3fa04611 ("mm/page_alloc: limit number of high-order pages on PCP during bulk free"), the PCP (Per-CPU Pageset) will be drained when PCP is mostly used for high-order pages freeing to improve the cache-hot pages reusing between page allocation and freeing CPUs.
But, the PCP draining mechanism may be triggered unexpectedly when process exits. With some customized trace point, it was found that PCP draining (free_high == true) was triggered with the order-1 page freeing with the following call stack,
=> free_unref_page_commit => free_unref_page => __mmdrop => exit_mm => do_exit => do_group_exit => __x64_sys_exit_group => do_syscall_64
Checking the source code, this is the page table PGD freeing (mm_free_pgd()). It's a order-1 page freeing if CONFIG_PAGE_TABLE_ISOLATION=y. Which is a common configuration for security.
Just before that, page freeing with the following call stack was found,
=> free_unref_page_commit => free_unref_page_list => release_pages => tlb_batch_pages_flush => tlb_finish_mmu => exit_mmap => __mmput => exit_mm => do_exit => do_group_exit => __x64_sys_exit_group => do_syscall_64
So, when a process exits,
- a large number of user pages of the process will be freed without page allocation, it's highly possible that pcp->free_factor becomes > 0. In fact, this is expected behavior to improve process exit performance.
- after freeing all user pages, the PGD will be freed, which is a order-1 page freeing, PCP will be drained.
All in all, when a process exits, it's high possible that the PCP will be drained. This is an unexpected behavior.
To avoid this, in the patch, the PCP draining will only be triggered for 2 consecutive high-order page freeing.
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances in parallel (each with `make -j 28`) in 8 cgroup. This simulates the kbuild server that is used by 0-Day kbuild service. With the patch, the cycles% of the spinlock contention (mostly for zone lock) decreases from 14.0% to 12.8% (with PCP size == 367). The number of PCP draining for high order pages freeing (free_high) decreases 80.5%.
This helps network workload too for reduced zone lock contention. On a 2-socket Intel server with 128 logical CPU, with the patch, the network bandwidth of the UNIX (AF_UNIX) test case of lmbench test suite with 16-pair processes increase 16.8%. The cycles% of the spinlock contention (mostly for zone lock) decreases from 51.4% to 46.1%. The number of PCP draining for high order pages freeing (free_high) decreases 30.5%. The cache miss rate keeps 0.2%.
Link: https://lkml.kernel.org/r/20231016053002.756205-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20231016053002.756205-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" ying.huang@intel.com Acked-by: Mel Gorman mgorman@techsingularity.net Cc: Vlastimil Babka vbabka@suse.cz Cc: David Hildenbrand david@redhat.com Cc: Johannes Weiner jweiner@redhat.com Cc: Dave Hansen dave.hansen@linux.intel.com Cc: Michal Hocko mhocko@suse.com Cc: Pavel Tatashin pasha.tatashin@soleen.com Cc: Matthew Wilcox willy@infradead.org Cc: Christoph Lameter cl@linux.com Cc: Arjan van de Ven arjan@linux.intel.com Cc: Sudeep Holla sudeep.holla@arm.com Signed-off-by: Andrew Morton akpm@linux-foundation.org Signed-off-by: Ze Zuo zuoze1@huawei.com --- include/linux/mmzone.h | 12 +++++++++++- mm/page_alloc.c | 11 ++++++++--- 2 files changed, 19 insertions(+), 4 deletions(-)
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index 4106fbc5b4b3..19c40a6f7e45 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -676,12 +676,22 @@ enum zone_watermarks { #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
+/* + * Flags used in pcp->flags field. + * + * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the + * previous page freeing. To avoid to drain PCP for an accident + * high-order page freeing. + */ +#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) + struct per_cpu_pages { spinlock_t lock; /* Protects lists field */ int count; /* number of pages in the list */ int high; /* high watermark, emptying needed */ int batch; /* chunk size for buddy add/remove */ - short free_factor; /* batch scaling factor during free */ + u8 flags; /* protected by pcp->lock */ + u8 free_factor; /* batch scaling factor during free */ #ifdef CONFIG_NUMA short expire; /* When 0, remote pagesets are drained */ #endif diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 85741403948f..89fb899f2d67 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -2370,7 +2370,7 @@ static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, { int high; int pindex; - bool free_high; + bool free_high = false;
__count_vm_events(PGFREE, 1 << order); pindex = order_to_pindex(migratetype, order); @@ -2383,8 +2383,13 @@ static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, * freeing without allocation. The remainder after bulk freeing * stops will be drained from vmstat refresh context. */ - free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); - + if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { + free_high = (pcp->free_factor && + (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER)); + pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; + } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { + pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; + } high = nr_pcp_high(pcp, zone, free_high); if (pcp->count >= high) { free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);