From: Alexei Starovoitov ast@kernel.org
mainline inclusion from mainline-v5.3-rc1 commit f7cf25b2026dc8441e0fa3a202c2aa8a56211e30 category: bugfix bugzilla: NA CVE: CVE-2021-34556
---------------------------
Compilers often spill induction variables into the stack, hence it is necessary for the verifier to track scalar values of the registers through stack slots.
Also few bpf programs were incorrectly rejected in the past, since the verifier was not able to track such constants while they were used to compute offsets into packet headers.
Tracking constants through the stack significantly decreases the chances of state pruning, since two different constants are considered to be different by state equivalency. End result that cilium tests suffer serious degradation in the number of states processed and corresponding verification time increase.
before after bpf_lb-DLB_L3.o 1838 6441 bpf_lb-DLB_L4.o 3218 5908 bpf_lb-DUNKNOWN.o 1064 1064 bpf_lxc-DDROP_ALL.o 26935 93790 bpf_lxc-DUNKNOWN.o 34439 123886 bpf_netdev.o 9721 31413 bpf_overlay.o 6184 18561 bpf_lxc_jit.o 39389 359445
After further debugging turned out that cillium progs are getting hurt by clang due to the same constant tracking issue. Newer clang generates better code by spilling less to the stack. Instead it keeps more constants in the registers which hurts state pruning since the verifier already tracks constants in the registers: old clang new clang (no spill/fill tracking introduced by this patch) bpf_lb-DLB_L3.o 1838 1923 bpf_lb-DLB_L4.o 3218 3077 bpf_lb-DUNKNOWN.o 1064 1062 bpf_lxc-DDROP_ALL.o 26935 166729 bpf_lxc-DUNKNOWN.o 34439 174607 bpf_netdev.o 9721 8407 bpf_overlay.o 6184 5420 bpf_lcx_jit.o 39389 39389
The final table is depressing: old clang old clang new clang new clang const spill/fill const spill/fill bpf_lb-DLB_L3.o 1838 6441 1923 8128 bpf_lb-DLB_L4.o 3218 5908 3077 6707 bpf_lb-DUNKNOWN.o 1064 1064 1062 1062 bpf_lxc-DDROP_ALL.o 26935 93790 166729 380712 bpf_lxc-DUNKNOWN.o 34439 123886 174607 440652 bpf_netdev.o 9721 31413 8407 31904 bpf_overlay.o 6184 18561 5420 23569 bpf_lxc_jit.o 39389 359445 39389 359445
Tracking constants in the registers hurts state pruning already. Adding tracking of constants through stack hurts pruning even more. The later patch address this general constant tracking issue with coarse/precise logic.
Signed-off-by: Alexei Starovoitov ast@kernel.org Acked-by: Andrii Nakryiko andriin@fb.com Signed-off-by: Daniel Borkmann daniel@iogearbox.net
Conflicts: kernel/bpf/verifier.c
Signed-off-by: He Fengqinghefengqing@huawei.com Reviewed-by: Yue Haibing yuehaibing@huawei.com Signed-off-by: Yang Yingliang yangyingliang@huawei.com --- kernel/bpf/verifier.c | 90 +++++++++++++++++++++++++++++++------------ 1 file changed, 66 insertions(+), 24 deletions(-)
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index f6d092809ec3f..5ca4b137a25a7 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -981,6 +981,23 @@ static bool register_is_null(struct bpf_reg_state *reg) return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); }
+static bool register_is_const(struct bpf_reg_state *reg) +{ + return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); +} + +static void save_register_state(struct bpf_func_state *state, + int spi, struct bpf_reg_state *reg) +{ + int i; + + state->stack[spi].spilled_ptr = *reg; + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + + for (i = 0; i < BPF_REG_SIZE; i++) + state->stack[spi].slot_type[i] = STACK_SPILL; +} + /* check_stack_read/write functions track spill/fill of registers, * stack boundary and alignment are checked in check_mem_access() */ @@ -990,7 +1007,7 @@ static int check_stack_write(struct bpf_verifier_env *env, { struct bpf_func_state *cur; /* state of the current function */ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; - enum bpf_reg_type type; + struct bpf_reg_state *reg = NULL;
err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), true); @@ -1007,27 +1024,36 @@ static int check_stack_write(struct bpf_verifier_env *env, }
cur = env->cur_state->frame[env->cur_state->curframe]; - if (value_regno >= 0 && - is_spillable_regtype((type = cur->regs[value_regno].type))) { + if (value_regno >= 0) + reg = &cur->regs[value_regno];
+ if (reg && size == BPF_REG_SIZE && register_is_const(reg) && + !register_is_null(reg) && env->allow_ptr_leaks) { + save_register_state(state, spi, reg); + } else if (reg && is_spillable_regtype(reg->type)) { /* register containing pointer is being spilled into stack */ if (size != BPF_REG_SIZE) { verbose(env, "invalid size of register spill\n"); return -EACCES; }
- if (state != cur && type == PTR_TO_STACK) { + if (state != cur && reg->type == PTR_TO_STACK) { verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; }
- /* save register state */ - state->stack[spi].spilled_ptr = cur->regs[value_regno]; - state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; - - for (i = 0; i < BPF_REG_SIZE; i++) { - if (state->stack[spi].slot_type[i] == STACK_MISC && - !env->allow_ptr_leaks) { + if (!env->allow_ptr_leaks) { + bool sanitize = false; + + if (state->stack[spi].slot_type[0] == STACK_SPILL && + register_is_const(&state->stack[spi].spilled_ptr)) + sanitize = true; + for (i = 0; i < BPF_REG_SIZE; i++) + if (state->stack[spi].slot_type[i] == STACK_MISC) { + sanitize = true; + break; + } + if (sanitize) { int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; int soff = (-spi - 1) * BPF_REG_SIZE;
@@ -1050,8 +1076,8 @@ static int check_stack_write(struct bpf_verifier_env *env, } *poff = soff; } - state->stack[spi].slot_type[i] = STACK_SPILL; } + save_register_state(state, spi, reg); } else { u8 type = STACK_MISC;
@@ -1070,8 +1096,7 @@ static int check_stack_write(struct bpf_verifier_env *env, state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
/* when we zero initialize stack slots mark them as such */ - if (value_regno >= 0 && - register_is_null(&cur->regs[value_regno])) + if (reg && register_is_null(reg)) type = STACK_ZERO;
for (i = 0; i < size; i++) @@ -1088,6 +1113,7 @@ static int check_stack_read(struct bpf_verifier_env *env, struct bpf_verifier_state *vstate = env->cur_state; struct bpf_func_state *state = vstate->frame[vstate->curframe]; int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; + struct bpf_reg_state *reg; u8 *stype;
if (reg_state->allocated_stack <= slot) { @@ -1096,11 +1122,20 @@ static int check_stack_read(struct bpf_verifier_env *env, return -EACCES; } stype = reg_state->stack[spi].slot_type; + reg = ®_state->stack[spi].spilled_ptr;
if (stype[0] == STACK_SPILL) { if (size != BPF_REG_SIZE) { - verbose(env, "invalid size of register spill\n"); - return -EACCES; + if (reg->type != SCALAR_VALUE) { + verbose(env, "invalid size of register fill\n"); + return -EACCES; + } + if (value_regno >= 0) { + mark_reg_unknown(env, state->regs, value_regno); + state->regs[value_regno].live |= REG_LIVE_WRITTEN; + } + mark_reg_read(env, reg, reg->parent); + return 0; } for (i = 1; i < BPF_REG_SIZE; i++) { if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { @@ -1111,16 +1146,14 @@ static int check_stack_read(struct bpf_verifier_env *env,
if (value_regno >= 0) { /* restore register state from stack */ - state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; + state->regs[value_regno] = *reg; /* mark reg as written since spilled pointer state likely * has its liveness marks cleared by is_state_visited() * which resets stack/reg liveness for state transitions */ state->regs[value_regno].live |= REG_LIVE_WRITTEN; } - mark_reg_read(env, ®_state->stack[spi].spilled_ptr, - reg_state->stack[spi].spilled_ptr.parent); - return 0; + mark_reg_read(env, reg, reg->parent); } else { int zeros = 0;
@@ -1135,8 +1168,7 @@ static int check_stack_read(struct bpf_verifier_env *env, off, i, size); return -EACCES; } - mark_reg_read(env, ®_state->stack[spi].spilled_ptr, - reg_state->stack[spi].spilled_ptr.parent); + mark_reg_read(env, reg, reg->parent); if (value_regno >= 0) { if (zeros == size) { /* any size read into register is zero extended, @@ -1149,8 +1181,8 @@ static int check_stack_read(struct bpf_verifier_env *env, } state->regs[value_regno].live |= REG_LIVE_WRITTEN; } - return 0; } + return 0; }
static int check_stack_access(struct bpf_verifier_env *env, @@ -1810,7 +1842,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, { struct bpf_reg_state *reg = cur_regs(env) + regno; struct bpf_func_state *state = func(env, reg); - int off, i, slot, spi; + int off, i, j, slot, spi;
if (reg->type != PTR_TO_STACK) { /* Allow zero-byte read from NULL, regardless of pointer type */ @@ -1862,6 +1894,16 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, *stype = STACK_MISC; goto mark; } + + if (state->stack[spi].slot_type[0] == STACK_SPILL && + state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { + __mark_reg_unknown(&state->stack[spi].spilled_ptr); + for (j = 0; j < BPF_REG_SIZE; j++) + state->stack[spi].slot_type[j] = STACK_MISC; + goto mark; + } + + err: verbose(env, "invalid indirect read from stack off %d+%d size %d\n", off, i, access_size);
From: Daniel Borkmann daniel@iogearbox.net
mainline inclusion from mainline-v5.14-rc5 commit f5e81d1117501546b7be050c5fbafa6efd2c722c category: bugfix bugzilla: NA CVE: CVE-2021-34556
---------------------------
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already.
This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs.
The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers.
Co-developed-by: Piotr Krysiuk piotras@gmail.com Co-developed-by: Benedict Schlueter benedict.schlueter@rub.de Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Piotr Krysiuk piotras@gmail.com Signed-off-by: Benedict Schlueter benedict.schlueter@rub.de Acked-by: Alexei Starovoitov ast@kernel.org Conflicts: kernel/bpf/core.c kernel/bpf/disasm.c Signed-off-by: He Fengqinghefengqing@huawei.com Reviewed-by: Yue Haibing yuehaibing@huawei.com Signed-off-by: Yang Yingliang yangyingliang@huawei.com --- arch/arm/net/bpf_jit_32.c | 3 +++ arch/arm64/net/bpf_jit_comp.c | 13 +++++++++++++ arch/mips/net/ebpf_jit.c | 3 +++ arch/powerpc/net/bpf_jit_comp64.c | 6 ++++++ arch/s390/net/bpf_jit_comp.c | 5 +++++ arch/sparc/net/bpf_jit_comp_64.c | 3 +++ arch/x86/net/bpf_jit_comp.c | 7 +++++++ arch/x86/net/bpf_jit_comp32.c | 6 ++++++ include/linux/filter.h | 15 +++++++++++++++ kernel/bpf/core.c | 18 +++++++++++++++++- kernel/bpf/disasm.c | 16 +++++++++------- 11 files changed, 87 insertions(+), 8 deletions(-)
diff --git a/arch/arm/net/bpf_jit_32.c b/arch/arm/net/bpf_jit_32.c index 328ced7bfaf26..79b12e7445373 100644 --- a/arch/arm/net/bpf_jit_32.c +++ b/arch/arm/net/bpf_jit_32.c @@ -1578,6 +1578,9 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); break; + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/arm64/net/bpf_jit_comp.c b/arch/arm64/net/bpf_jit_comp.c index e20f59a3b35d1..b7b0fd28dde5b 100644 --- a/arch/arm64/net/bpf_jit_comp.c +++ b/arch/arm64/net/bpf_jit_comp.c @@ -716,6 +716,19 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, } break;
+ /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + /* + * Nothing required here. + * + * In case of arm64, we rely on the firmware mitigation of + * Speculative Store Bypass as controlled via the ssbd kernel + * parameter. Whenever the mitigation is enabled, it works + * for all of the kernel code with no need to provide any + * additional instructions. + */ + break; + /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/mips/net/ebpf_jit.c b/arch/mips/net/ebpf_jit.c index 3832c46286082..947a7172c814e 100644 --- a/arch/mips/net/ebpf_jit.c +++ b/arch/mips/net/ebpf_jit.c @@ -1282,6 +1282,9 @@ static int build_one_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, } break;
+ case BPF_ST | BPF_NOSPEC: /* speculation barrier */ + break; + case BPF_ST | BPF_B | BPF_MEM: case BPF_ST | BPF_H | BPF_MEM: case BPF_ST | BPF_W | BPF_MEM: diff --git a/arch/powerpc/net/bpf_jit_comp64.c b/arch/powerpc/net/bpf_jit_comp64.c index 87f80a66a352d..791accb89cf8a 100644 --- a/arch/powerpc/net/bpf_jit_comp64.c +++ b/arch/powerpc/net/bpf_jit_comp64.c @@ -623,6 +623,12 @@ static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, } break;
+ /* + * BPF_ST NOSPEC (speculation barrier) + */ + case BPF_ST | BPF_NOSPEC: + break; + /* * BPF_ST(X) */ diff --git a/arch/s390/net/bpf_jit_comp.c b/arch/s390/net/bpf_jit_comp.c index e42354b15e0bc..2a36845dcbc04 100644 --- a/arch/s390/net/bpf_jit_comp.c +++ b/arch/s390/net/bpf_jit_comp.c @@ -883,6 +883,11 @@ static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i break; } break; + /* + * BPF_NOSPEC (speculation barrier) + */ + case BPF_ST | BPF_NOSPEC: + break; /* * BPF_ST(X) */ diff --git a/arch/sparc/net/bpf_jit_comp_64.c b/arch/sparc/net/bpf_jit_comp_64.c index ec4da4dc98f12..1bb1e64d4377d 100644 --- a/arch/sparc/net/bpf_jit_comp_64.c +++ b/arch/sparc/net/bpf_jit_comp_64.c @@ -1261,6 +1261,9 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) emit(opcode | RS1(src) | rs2 | RD(dst), ctx); break; } + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c index 7b931a9d1b45f..4d45a9d8e9275 100644 --- a/arch/x86/net/bpf_jit_comp.c +++ b/arch/x86/net/bpf_jit_comp.c @@ -731,6 +731,13 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, } break;
+ /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + if (boot_cpu_has(X86_FEATURE_XMM2)) + /* Emit 'lfence' */ + EMIT3(0x0F, 0xAE, 0xE8); + break; + /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: if (is_ereg(dst_reg)) diff --git a/arch/x86/net/bpf_jit_comp32.c b/arch/x86/net/bpf_jit_comp32.c index adee990abab14..f48300988bc2a 100644 --- a/arch/x86/net/bpf_jit_comp32.c +++ b/arch/x86/net/bpf_jit_comp32.c @@ -1683,6 +1683,12 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, i++; break; } + /* speculation barrier */ + case BPF_ST | BPF_NOSPEC: + if (boot_cpu_has(X86_FEATURE_XMM2)) + /* Emit 'lfence' */ + EMIT3(0x0F, 0xAE, 0xE8); + break; /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: diff --git a/include/linux/filter.h b/include/linux/filter.h index 5c9b8cc6ed2ce..4d210560950fd 100644 --- a/include/linux/filter.h +++ b/include/linux/filter.h @@ -64,6 +64,11 @@ struct sock_reuseport; /* unused opcode to mark call to interpreter with arguments */ #define BPF_CALL_ARGS 0xe0
+/* unused opcode to mark speculation barrier for mitigating + * Speculative Store Bypass + */ +#define BPF_NOSPEC 0xc0 + /* As per nm, we expose JITed images as text (code) section for * kallsyms. That way, tools like perf can find it to match * addresses. @@ -350,6 +355,16 @@ struct sock_reuseport; .off = 0, \ .imm = 0 })
+/* Speculation barrier */ + +#define BPF_ST_NOSPEC() \ + ((struct bpf_insn) { \ + .code = BPF_ST | BPF_NOSPEC, \ + .dst_reg = 0, \ + .src_reg = 0, \ + .off = 0, \ + .imm = 0 }) + /* Internal classic blocks for direct assignment */
#define __BPF_STMT(CODE, K) \ diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index ea6a9559394ee..3eee855fd231b 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -33,6 +33,7 @@ #include <linux/rcupdate.h> #include <linux/perf_event.h>
+#include <asm/barrier.h> #include <asm/unaligned.h>
/* Registers */ @@ -1134,6 +1135,7 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) /* Non-UAPI available opcodes. */ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, + [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, }; #undef BPF_INSN_3_LBL #undef BPF_INSN_2_LBL @@ -1343,7 +1345,21 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) COND_JMP(s, JSGE, >=) COND_JMP(s, JSLE, <=) #undef COND_JMP - /* STX and ST and LDX*/ + /* ST, STX and LDX*/ + ST_NOSPEC: + /* Speculation barrier for mitigating Speculative Store Bypass. + * In case of arm64, we rely on the firmware mitigation as + * controlled via the ssbd kernel parameter. Whenever the + * mitigation is enabled, it works for all of the kernel code + * with no need to provide any additional instructions here. + * In case of x86, we use 'lfence' insn for mitigation. We + * reuse preexisting logic from Spectre v1 mitigation that + * happens to produce the required code on x86 for v4 as well. + */ +#ifdef CONFIG_X86 + barrier_nospec(); +#endif + CONT; #define LDST(SIZEOP, SIZE) \ STX_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ diff --git a/kernel/bpf/disasm.c b/kernel/bpf/disasm.c index de73f55e42fd4..3016372d01c19 100644 --- a/kernel/bpf/disasm.c +++ b/kernel/bpf/disasm.c @@ -170,15 +170,17 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs, else verbose(cbs->private_data, "BUG_%02x\n", insn->code); } else if (class == BPF_ST) { - if (BPF_MODE(insn->code) != BPF_MEM) { + if (BPF_MODE(insn->code) == BPF_MEM) { + verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->imm); + } else if (BPF_MODE(insn->code) == 0xc0 /* BPF_NOSPEC, no UAPI */) { + verbose(cbs->private_data, "(%02x) nospec\n", insn->code); + } else { verbose(cbs->private_data, "BUG_st_%02x\n", insn->code); - return; } - verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n", - insn->code, - bpf_ldst_string[BPF_SIZE(insn->code) >> 3], - insn->dst_reg, - insn->off, insn->imm); } else if (class == BPF_LDX) { if (BPF_MODE(insn->code) != BPF_MEM) { verbose(cbs->private_data, "BUG_ldx_%02x\n", insn->code);
From: Daniel Borkmann daniel@iogearbox.net
mainline inclusion from mainline-v5.14-rc5 commit 2039f26f3aca5b0e419b98f65dd36481337b86ee category: bugfix bugzilla: NA CVE: CVE-2021-35477
---------------------------
Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5:
A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed.
af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page".
The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency operation.
However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well:
[...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3
As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2.
Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows:
[...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...]
Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources.
This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows:
1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation.
2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types.
While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]:
[...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...]
From BPF side, the problem space is reduced, however, options are rather limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack:
[...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...]
While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes:
[...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...]
The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:
[...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...]
One small upside on the fix is that it lifts constraints from af86ca4e3088 where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost.
[0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-specul... [2] https://arxiv.org/pdf/1905.05725.pdf
Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2026d ("bpf: track spill/fill of constants") Co-developed-by: Piotr Krysiuk piotras@gmail.com Co-developed-by: Benedict Schlueter benedict.schlueter@rub.de Signed-off-by: Daniel Borkmann daniel@iogearbox.net Signed-off-by: Piotr Krysiuk piotras@gmail.com Signed-off-by: Benedict Schlueter benedict.schlueter@rub.de Acked-by: Alexei Starovoitov ast@kernel.org Conflicts: kernel/bpf/verifier.c Signed-off-by: He Fengqinghefengqing@huawei.com Reviewed-by: Yue Haibing yuehaibing@huawei.com Signed-off-by: Yang Yingliang yangyingliang@huawei.com --- include/linux/bpf_verifier.h | 2 +- kernel/bpf/verifier.c | 87 ++++++++++++++---------------------- 2 files changed, 34 insertions(+), 55 deletions(-)
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index daab0960c0544..e64ac93f7f4c0 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -158,8 +158,8 @@ struct bpf_insn_aux_data { u32 alu_limit; /* limit for add/sub register with pointer */ }; int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ - int sanitize_stack_off; /* stack slot to be cleared */ bool seen; /* this insn was processed by the verifier */ + bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ u8 alu_state; /* used in combination with alu_limit */ };
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 5ca4b137a25a7..6dd4833f383bb 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1026,6 +1026,19 @@ static int check_stack_write(struct bpf_verifier_env *env, cur = env->cur_state->frame[env->cur_state->curframe]; if (value_regno >= 0) reg = &cur->regs[value_regno]; + if (!env->allow_ptr_leaks) { + bool sanitize = reg && is_spillable_regtype(reg->type); + + for (i = 0; i < size; i++) { + if (state->stack[spi].slot_type[i] == STACK_INVALID) { + sanitize = true; + break; + } + } + + if (sanitize) + env->insn_aux_data[insn_idx].sanitize_stack_spill = true; + }
if (reg && size == BPF_REG_SIZE && register_is_const(reg) && !register_is_null(reg) && env->allow_ptr_leaks) { @@ -1041,42 +1054,6 @@ static int check_stack_write(struct bpf_verifier_env *env, verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; } - - if (!env->allow_ptr_leaks) { - bool sanitize = false; - - if (state->stack[spi].slot_type[0] == STACK_SPILL && - register_is_const(&state->stack[spi].spilled_ptr)) - sanitize = true; - for (i = 0; i < BPF_REG_SIZE; i++) - if (state->stack[spi].slot_type[i] == STACK_MISC) { - sanitize = true; - break; - } - if (sanitize) { - int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; - int soff = (-spi - 1) * BPF_REG_SIZE; - - /* detected reuse of integer stack slot with a pointer - * which means either llvm is reusing stack slot or - * an attacker is trying to exploit CVE-2018-3639 - * (speculative store bypass) - * Have to sanitize that slot with preemptive - * store of zero. - */ - if (*poff && *poff != soff) { - /* disallow programs where single insn stores - * into two different stack slots, since verifier - * cannot sanitize them - */ - verbose(env, - "insn %d cannot access two stack slots fp%d and fp%d", - insn_idx, *poff, soff); - return -EINVAL; - } - *poff = soff; - } - } save_register_state(state, spi, reg); } else { u8 type = STACK_MISC; @@ -6057,34 +6034,33 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) insn = env->prog->insnsi + delta;
for (i = 0; i < insn_cnt; i++, insn++) { + bool ctx_access; + if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || insn->code == (BPF_LDX | BPF_MEM | BPF_H) || insn->code == (BPF_LDX | BPF_MEM | BPF_W) || - insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) + insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { type = BPF_READ; - else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || - insn->code == (BPF_STX | BPF_MEM | BPF_H) || - insn->code == (BPF_STX | BPF_MEM | BPF_W) || - insn->code == (BPF_STX | BPF_MEM | BPF_DW)) + ctx_access = true; + } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || + insn->code == (BPF_STX | BPF_MEM | BPF_H) || + insn->code == (BPF_STX | BPF_MEM | BPF_W) || + insn->code == (BPF_STX | BPF_MEM | BPF_DW) || + insn->code == (BPF_ST | BPF_MEM | BPF_B) || + insn->code == (BPF_ST | BPF_MEM | BPF_H) || + insn->code == (BPF_ST | BPF_MEM | BPF_W) || + insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { type = BPF_WRITE; - else + ctx_access = BPF_CLASS(insn->code) == BPF_STX; + } else { continue; + }
if (type == BPF_WRITE && - env->insn_aux_data[i + delta].sanitize_stack_off) { + env->insn_aux_data[i + delta].sanitize_stack_spill) { struct bpf_insn patch[] = { - /* Sanitize suspicious stack slot with zero. - * There are no memory dependencies for this store, - * since it's only using frame pointer and immediate - * constant of zero - */ - BPF_ST_MEM(BPF_DW, BPF_REG_FP, - env->insn_aux_data[i + delta].sanitize_stack_off, - 0), - /* the original STX instruction will immediately - * overwrite the same stack slot with appropriate value - */ *insn, + BPF_ST_NOSPEC(), };
cnt = ARRAY_SIZE(patch); @@ -6098,6 +6074,9 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) continue; }
+ if (!ctx_access) + continue; + if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) continue;