From: Yosry Ahmed yosryahmed@google.com
mainline inclusion from mainline-v6.2-rc1 commit adb8213014b25c7f1d75d5b219becaadcd695efb category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I9MD18
Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?i...
--------------------------------
Patch series "mm: memcg: fix protection of reclaim target memcg", v3.
This series fixes a bug in calculating the protection of the reclaim target memcg where we end up using stale effective protection values from the last reclaim operation, instead of completely ignoring the protection of the reclaim target as intended. More detailed explanation and examples in patch 1, which includes the fix. Patches 2 & 3 introduce a selftest case that catches the bug.
This patch (of 3):
When we are doing memcg reclaim, the intended behavior is that we ignore any protection (memory.min, memory.low) of the target memcg (but not its children). Ever since the patch pointed to by the "Fixes" tag, we actually read a stale value for the target memcg protection when deciding whether to skip the memcg or not because it is protected. If the stale value happens to be high enough, we don't reclaim from the target memcg.
Essentially, in some cases we may falsely skip reclaiming from the target memcg of reclaim because we read a stale protection value from last time we reclaimed from it.
During reclaim, mem_cgroup_calculate_protection() is used to determine the effective protection (emin and elow) values of a memcg. The protection of the reclaim target is ignored, but we cannot set their effective protection to 0 due to a limitation of the current implementation (see comment in mem_cgroup_protection()). Instead, we leave their effective protection values unchaged, and later ignore it in mem_cgroup_protection().
However, mem_cgroup_protection() is called later in shrink_lruvec()->get_scan_count(), which is after the mem_cgroup_below_{min/low}() checks in shrink_node_memcgs(). As a result, the stale effective protection values of the target memcg may lead us to skip reclaiming from the target memcg entirely, before calling shrink_lruvec(). This can be even worse with recursive protection, where the stale target memcg protection can be higher than its standalone protection. See two examples below (a similar version of example (a) is added to test_memcontrol in a later patch).
(a) A simple example with proactive reclaim is as follows. Consider the following hierarchy: ROOT | A | B (memory.min = 10M)
Consider the following scenario: - B has memory.current = 10M. - The system undergoes global reclaim (or memcg reclaim in A). - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() calculates the effective min (emin) of B as 10M. - mem_cgroup_below_min() returns true for B, we do not reclaim from B. - Now if we want to reclaim 5M from B using proactive reclaim (memory.reclaim), we should be able to, as the protection of the target memcg should be ignored. - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() immediately returns for B without doing anything, as B is the target memcg, relying on mem_cgroup_protection() to ignore B's stale effective min (still 10M). - mem_cgroup_below_min() reads the stale effective min for B and we skip it instead of ignoring its protection as intended, as we never reach mem_cgroup_protection().
(b) An more complex example with recursive protection is as follows. Consider the following hierarchy with memory_recursiveprot: ROOT | A (memory.min = 50M) | B (memory.min = 10M, memory.high = 40M)
Consider the following scenario: - B has memory.current = 35M. - The system undergoes global reclaim (target memcg is NULL). - B will have an effective min of 50M (all of A's unclaimed protection). - B will not be reclaimed from. - Now allocate 10M more memory in B, pushing it above it's high limit. - The system undergoes memcg reclaim from B (target memcg is B). - Like example (a), we do nothing in mem_cgroup_calculate_protection(), then call mem_cgroup_below_min(), which will read the stale effective min for B (50M) and skip it. In this case, it's even worse because we are not just considering B's standalone protection (10M), but we are reading a much higher stale protection (50M) which will cause us to not reclaim from B at all.
This is an artifact of commit 45c7f7e1ef17 ("mm, memcg: decouple e{low,min} state mutations from protection checks") which made mem_cgroup_calculate_protection() only change the state without returning any value. Before that commit, we used to return MEMCG_PROT_NONE for the target memcg, which would cause us to skip the mem_cgroup_below_{min/low}() checks. After that commit we do not return anything and we end up checking the min & low effective protections for the target memcg, which are stale.
Update mem_cgroup_supports_protection() to also check if we are reclaiming from the target, and rename it to mem_cgroup_unprotected() (now returns true if we should not protect the memcg, much simpler logic).
Link: https://lkml.kernel.org/r/20221202031512.1365483-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20221202031512.1365483-2-yosryahmed@google.com Fixes: 45c7f7e1ef17 ("mm, memcg: decouple e{low,min} state mutations from protection checks") Signed-off-by: Yosry Ahmed yosryahmed@google.com Reviewed-by: Roman Gushchin roman.gushchin@linux.dev Cc: Chris Down chris@chrisdown.name Cc: David Rientjes rientjes@google.com Cc: Johannes Weiner hannes@cmpxchg.org Cc: Matthew Wilcox willy@infradead.org Cc: Michal Hocko mhocko@suse.com Cc: Muchun Song songmuchun@bytedance.com Cc: Shakeel Butt shakeelb@google.com Cc: Tejun Heo tj@kernel.org Cc: Vasily Averin vasily.averin@linux.dev Cc: Vlastimil Babka vbabka@suse.cz Cc: Yu Zhao yuzhao@google.com Signed-off-by: Andrew Morton akpm@linux-foundation.org conflicts: mm/vmscan.c Signed-off-by: Cai Xinchen caixinchen1@huawei.com --- include/linux/memcontrol.h | 31 +++++++++++++++++++++---------- mm/vmscan.c | 4 ++-- 2 files changed, 23 insertions(+), 12 deletions(-)
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h index 24794b56eaaf..287c54141a90 100644 --- a/include/linux/memcontrol.h +++ b/include/linux/memcontrol.h @@ -769,28 +769,32 @@ static inline void mem_cgroup_protection(struct mem_cgroup *root, void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg);
-static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) +static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, + struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support - * protection. + * protection. The target memcg's protection is ignored, see + * mem_cgroup_calculate_protection() and mem_cgroup_protection() */ - return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); - + return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || + memcg == target; }
-static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) +static inline bool mem_cgroup_below_low(struct mem_cgroup *target, + struct mem_cgroup *memcg) { - if (!mem_cgroup_supports_protection(memcg)) + if (mem_cgroup_unprotected(target, memcg)) return false;
return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); }
-static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) +static inline bool mem_cgroup_below_min(struct mem_cgroup *target, + struct mem_cgroup *memcg) { - if (!mem_cgroup_supports_protection(memcg)) + if (mem_cgroup_unprotected(target, memcg)) return false;
return READ_ONCE(memcg->memory.emin) >= @@ -1378,12 +1382,19 @@ static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, { }
-static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) +static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, + struct mem_cgroup *memcg) +{ + return true; +} +static inline bool mem_cgroup_below_low(struct mem_cgroup *target, + struct mem_cgroup *memcg) { return false; }
-static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) +static inline bool mem_cgroup_below_min(struct mem_cgroup *target, + struct mem_cgroup *memcg) { return false; } diff --git a/mm/vmscan.c b/mm/vmscan.c index 3d383c7126e3..044bf496885b 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2860,13 +2860,13 @@ static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
mem_cgroup_calculate_protection(target_memcg, memcg);
- if (mem_cgroup_below_min(memcg)) { + if (mem_cgroup_below_min(target_memcg, memcg)) { /* * Hard protection. * If there is no reclaimable memory, OOM. */ continue; - } else if (mem_cgroup_below_low(memcg)) { + } else if (mem_cgroup_below_low(target_memcg, memcg)) { /* * Soft protection. * Respect the protection only as long as
反馈: 您发送到kernel@openeuler.org的补丁/补丁集,已成功转换为PR! PR链接地址: https://gitee.com/openeuler/kernel/pulls/6792 邮件列表地址:https://mailweb.openeuler.org/hyperkitty/list/kernel@openeuler.org/message/B...
FeedBack: The patch(es) which you have sent to kernel@openeuler.org mailing list has been converted to a pull request successfully! Pull request link: https://gitee.com/openeuler/kernel/pulls/6792 Mailing list address: https://mailweb.openeuler.org/hyperkitty/list/kernel@openeuler.org/message/B...